

Welcome to liver-ct-segmentation’s documentation!

Contents:

	liver-ct-segmentation
	Architecture

	Credits

	Usage
	Setup

	Training

	Model
	Overview

	Training and test data

	Model architecture

	Evaluation

	Hyperparameter selection

	Credits
	Development Lead

	Contributors

	Changelog
	1.0.0 (2021-03-28)

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

Indices and tables

	Index

	Module Index

	Search Page

liver-ct-segmentation

[image: Github Workflow CPU Training liver-ct-segmentation Status]
 [https://github.com/mlf-core/liver-ct-segmentation/actions?query=workflow%3A%22Train+liver-ct-segmentation+using+CPU%22][image: Publish Container to Docker Packages]
 [https://github.com/mlf-core/liver-ct-segmentation/actions?query=workflow%3A%22Publish+Container+to+Docker+Packages%22][image: mlf-core lint]
 [https://github.com/mlf-core/liver-ct-segmentation/actions?query=workflow%3A%22mlf-core+lint%22][image: Documentation Status]
 [https://liver-ct-segmentation.readthedocs.io/en/latest/?badge=latest]Liver-tumor segmentation of computed tomography scans using a U-Net model.

	Free software: MIT

	Documentation: https://liver-ct-segmentation.readthedocs.io.

A reproducible, Pytorch-based model for liver-tumor segmentation of computed tomography (CT) scans using a 3D U-Net [https://arxiv.org/abs/1606.06650] architecture. This project uses the Liver Tumor Segmentation Benchmark (LiTS [https://arxiv.org/abs/1901.04056]) dataset to train a simplified U-Net model for semantic segmentation of liver and tumor tissue (background, liver, tumor) from abdominal CT scans.

[image: 3D U-Net for LiTS]
A reproducibility analysis was conducted using three different experimental setups, a standard setup with disregard to reproducible calculations (Random), a setup where random seeds are defined (Seed), and the mlf-core deterministic setup (Deterministic). The LiTS dataset was randomly sampled to define a small test set (10%, 13 tomograms) and models were trained for 1000 epochs with the remainder of the tomograms, using the abovementioned experimental setups (10 training runs per setup). Reproducibility of prediction was tested by evaluating the performance of the models on the test set, using Intersection over Union (IoU) as a metric (Jaccard index).

[image: IoU results]

Architecture

A reduced 3D U-Net architecture. The U-Net is a convolutional “encoder-decoder” model for semantic segmentation of 2D and 3D images. In this simplified model, convolutional layers with a stride of 2 are used for down-sampling, while the up-sampling operation was performed with the nearest neighbor algorithm. Here, convolutions use filter sizes of 3x3x3, dropout is applied to every convolutional layer, and the softmax function is used on the last layer to produce class pseudo-probabilities. Blue boxes correspond to 3D multi-channel feature maps, with the number of channels denoted on top, and the size of the spatial dimensions marked in the lower left.

[image: U-Net architecture]

Credits

This package was created with mlf-core [https://mlf-core.readthedocs.io/en/latest/] using Cookiecutter [https://github.com/audreyr/cookiecutter].

Usage

Setup

mlf-core based mlflow projects require either Conda or Docker to be installed.
The usage of Docker is highly preferred, since it ensures that system-intelligence can fetch all required and accessible hardware.
This cannot be guaranteed for MacOS let alone Windows environments.

Conda

There is no further setup required besides having Conda installed and CUDA configured for GPU support.
mlflow will create a new environment for every run.

Docker

If you use Docker you should not need to build the Docker container manually, since it should be available on Github Packages or another registry.
However, if you want to build it manually for e.g. development purposes, ensure that the names matches the defined name in the ``MLproject``file.
This is sufficient to train on the CPU. If you want to train using the GPU you need to have the NVIDIA Container Toolkit [https://github.com/NVIDIA/nvidia-docker] installed.

Training

Training on the CPU

Set your desired environment in the MLproject file. Start training using mlflow run ..
No further parameters are required.

Training using GPUs

Conda environments will automatically use the GPU if available.
Docker requires the accessible GPUs to be passed as runtime parameters. To train using all gpus run mlflow run . -A t-A gpus=all -P gpus=<<num_of_gpus>> -P acc=ddp.
To train only on CPU it is sufficient to call mlflow run . -A t. To train on a single GPU, you can call mlflow run . -A t -A gpus=all -P gpus=1 and for multiple GPUs (for example 2)
mlflow run . -A t -A gpus=all -P gpus=2 -P accelerator=ddp.
You can replace all with specific GPU ids (e.g. 0) if desired.

Parameters

	gpus Number of gpus to train with [2: int]

	accelerator Accelerator connecting to the Lightning Trainer [‘ddp’: string]

	max_epochs: Number of epochs to train [1000: int]

	general-seed: Python, Random, Numpy seed [0: int]

	pytorch-seed: Pytorch specific seed [0: int]

	training-batch-size: Batch size for training batches [1: int]

	test-batch-size: Batch size for test batches [1: int]

	lr: Learning rate of the optimizer [0.0001: float]

	log-interval: Number of batches to train for before logging [3000: int]

	class-weights: Class weights for loss function (separated by commas) [‘0.2, 1.0, 2.5’: string]

	test-percent: Can be used to separate train and test sets (unused) [0.15: float]

	test-epochs: Number of epochs between validations [10: int]

	dataset-path: Path to dataset [‘/data/’: string]

	dataset-size: Can be used to reduce dataset size (unused) [131: int]

	n-channels: Number of input channels for U-Net [1: int]

	n-class: Number of classes for U-Net [3: int]

	num_workers: Number of workers for data loading [24: int]

	dropout-rate: Dropout rate for U-Net [0.25: float]

Model

Overview

The trained model is used for liver-tumor segmentation of computed tomography (CT) scans.

Training and test data

The training data origins from the Liver Tumor Segmentation Benchmark LiTS [https://arxiv.org/abs/1901.04056].
131 tomograms are part of the LiTS training dataset, from those 10% were randomly selected as a small test set (13 tomograms).
The datase is available via codalab [https://competitions.codalab.org/competitions/17094], or as a torrent [https://academictorrents.com/details/27772adef6f563a1ecc0ae19a528b956e6c803ce].

Model architecture

The model is based on Pytorch [https://pytorch.org/] and Pytorch Lightning [https://github.com/PyTorchLightning/pytorch-lightning].

A reduced 3D U-Net architecture [https://arxiv.org/abs/1606.06650]. The U-Net is a convolutional “encoder-decoder” model for semantic segmentation of 2D and 3D images. In this simplified model, convolutional layers with a stride of 2 are used for down-sampling, while the up-sampling operation was performed with the nearest neighbor algorithm. Here, convolutions use filter sizes of 3x3x3, dropout is applied to every convolutional layer, and the softmax function is used on the last layer to produce class pseudo-probabilities. Blue boxes correspond to 3D multi-channel feature maps, with the number of channels denoted on top, and the size of the spatial dimensions marked in the lower left.

[image: U-Net architecture]

Evaluation

A reproducibility analysis was conducted using three different experimental setups, a standard setup with disregard to reproducible calculations (Random), a setup where random seeds are defined (Seed), and the mlf-core deterministic setup (Deterministic). The LiTS dataset was randomly sampled to define a small test set (10%, 13 tomograms) and models were trained for 1000 epochs with the remainder of the tomograms, using the abovementioned experimental setups (10 training runs per setup). Reproducibility of prediction was tested by evaluating the performance of the models on the test set, using Intersection over Union (IoU) as a metric (Jaccard index).

[image: IoU results]
The full training history is viewable by running the mlflow user interface inside the root directory of this project:
mlflow ui.

Hyperparameter selection

Hyperparameters were chosen on widely known strong defaults.

	Adam optimizer was chosen for strong, general performance.

	The learning rate was set to 0.0001

	The class-weights were set to '0.2, 1.0, 2.5' for the background, liver, and tumor respectively.

	The dropout rate was set to 0.25

Credits

Development Lead

	Luis Kuhn <luis.kuhn-cuellar@qbic.uni-tuebingen.de>

	Lukas Heumos <lukas.heumos@posteo.net>

Contributors

None yet. Why not be the first?

Changelog

This project adheres to Semantic Versioning [https://semver.org/].

1.0.0 (2021-03-28)

Added

	First implementation of U-net for liver cancer segmentation

	Several runs conducted for the mlf-core paper

Fixed

Dependencies

Deprecated

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our
project and our community a harassment-free experience for everyone,
regardless of age, body size, disability, ethnicity, gender identity and
expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual
attention or advances

	Trolling, insulting/derogatory comments, and personal or political
attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or
electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of
acceptable behavior and are expected to take appropriate and fair
corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit,
or reject comments, commits, code, wiki edits, issues, and other
contributions that are not aligned to this Code of Conduct, or to ban
temporarily or permanently any contributor for other behaviors that they
deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public
spaces when an individual is representing the project or its community.
Examples of representing a project or community include using an
official project e-mail address, posting via an official social media
account, or acting as an appointed representative at an online or
offline event. Representation of a project may be further defined and
clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported by opening an issue. The project team
will review and investigate all complaints, and will respond in a way
that it deems appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in
good faith may face temporary or permanent repercussions as determined
by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to liver-ct-segmentation’s documentation!

 		
 liver-ct-segmentation

 		
 Architecture

 		
 Credits

 		
 Usage

 		
 Setup

 		
 Conda

 		
 Docker

 		
 Training

 		
 Training on the CPU

 		
 Training using GPUs

 		
 Parameters

 		
 Model

 		
 Overview

 		
 Training and test data

 		
 Model architecture

 		
 Evaluation

 		
 Hyperparameter selection

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 Changelog

 		
 1.0.0 (2021-03-28)

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

_images/iou_boxplots.png
1.0

0.9

Mean loU
o - o
(@)) ~ (00]

o
o

o
N

0.3

Random GPU

Seed GPU
Setup

Class
I Background
= Liver
B Tumor

Deterministic GPU

_images/u_net_architecture.png
32+ 64 32 32 3

output
b) segmentation
mask
A
64

» Concatenation

input CT
volume

128 x 128 x 128

1283
1283
1283
1283

64 +128

l”
300%
-

ln.n.n.» .

} (dropout) + 3D Conv (3x3x3) + BN + ReLU

"W 3D Conv (2x2x2, stride = 2)

A\ Up-sample (factor = 2)

3D Conv (1x1x1) + Softmax

_static/file.png

_static/minus.png

_static/plus.png

